Flexibility Ratio (F) 유연성비 - 라이닝 Bending Stiffness 에 의해 결정되는 요소
- 터널 반경이 크면 유연성비가 크다. - 라이닝 강성이 크면 F 가 작아짐 - 지반 강성이 작으면 F 가 작아짐. - Flexible 과 Stiff의 경계를 F=10 으로 구분하며, F>10 이면 Flexible 하다. 지반이 라이닝보다 유연히 움직인다. 연성으로 라이닝에 하중을 줄 수 있게 한다는 의미. 라이닝의 두께나 강성보다는 철근을 많이 삽입하도록 관리.
Compressibility Ration (C) - 지반의 압축 강성, 라이닝의 Hoop 강성
PSHA 의 목적 : Data 가 축적된 Ground Motion map 이 있는 경우 활용이 가능하지만, 그렇지 않은 미지의 지역이나, Ground Motion 관련 값을 최신 지진의 기록들로 Update 하는 경우 수행이 필요. Risk 를 확인하고 줄이면서도 경제성을 동시에 만족시키는 설계를 위함.
Program : SISMIC, HAZ38, EZ-FRISK
이론 : 변수 (확률, Magnitude, 거리, Amplitude (A)) 를 통해 특정 Amplitude 를 넘는 진동의 주기(진동수)에 대한 확률적인 값 계산. 지질학적, 지질 구조적, 지진 기록을 가미한 Risk Analysis. 지반 상태를 고려한 (Site Class, Shear velocity, N-value 로 결정) 예측 모델. Ground Motion Prediction 다른 지역의 모델 (Next Generation Attenuation) 을 바탕으로 Increasing Factor 를 결정 (Period 별)
순서 : 1. MCE : damped, probability for 50 years. (Return Period) 설정. OBE, SSE 설정
2. Vs, N, Cu 를 고려한 Ground Type 설정.. (지반조사 필요.) 3. 확률을 고려한 ag 값 결정하여 response spectrum 완성 Ss, S1 (Spectral Response Acceleration, g) 산정.
보편적인 지진 하중 V=PGA x W /R
PGA : peak ground acceleration, 지반가속도.
PBA : peak bedrock(base) acceleration, 지반가속도 R : response modification factor, 응답수정계수 (3~8) M : Magnitude
(Regional Earthquake map) R : Source distance V : Shear wave velocity 전단파속도 (0.61 sqrt(N) 사용 가능, DH/CH 등 불가능한 경우) Return period : 재현주기
SHA : Seismic Hazard Assesment - Input (지진기록, 재현주기, Frequency, 감쇠) (1) Ground Type (2) Design Response spectrum Acceleration for OBE, SSE (3) Horizontal Design Response Spectra at bedrock, ground surface (4) Vertical Design Response Spectra at bedrock, ground surface (5) Artificial earthquake waveform at bedrock and ground surface (6) Lab Test A. P, S wave velocity profile B. Dynamic shear modulus C. Dynamic young’s modulus D. Damping ratio E. Shear strain
- PGA, 0.2s, 1.0s 2.0s Spectral Acceleration - 보통 UBC, IBC 에서 제안하는 지역계수를 쓰는 것보다는 훨씬 적은 값을 얻게 되고, OBE 만 필요한 경우가 많기 때문에 건축물의 특징에 따라 지진계수를 많이 줄일 수 있음. (Assessmenet 비용을 프로젝트 초기에 고려하여 VE 로 활용할 수 있음.)
Time Histroy : Bedrock 의 Seismic Hazard 가 검토되면, 지표면까지의 전달을 위한 Shake Analysis 가 필요하고, (Convolution) Time History 가 Input 이 됨. 유사정적해석 : Pseudo-Static Analysis. Response Spectrum (반응스펙트럼/응답스펙트럼) 을 이용한 해석. Dynamic Modeling : Time History 필요. FFT : Fast Fourier Transform. 주파수 분석. FLAC model
SHAKE program Vertical / Horizontal : 진원거리가 멀어질수록 작아짐. 0.5~0.6 정도 1차원 등가선형해석. 선형탄성해석. r, G, D 를 비선형적으로 등가로서 계산.
1. Convolution : 하부지반(Bedrock)에 대한 response spectrum이 주어진경우 상부층(지표면)의 response를 구하는 Analysis 2. Deconvolution : 상부 층의 response spectrum이 주어진경우 하부 층의 response를 구하는 Analsis. 1-D wave 전파를 확인. 목적 : FLAC 에 사용될 input motion 을 지표면에서 구하여 (Outcrop 노두암으로부터)
PSHA : Probabilistic SHA SSRS : Smooth Surface Response Spectrum MCE : Maximum Considered Earthquake 5% damp, 50 years 1% probability : 4975 yrs (SSE) 5% damp, 50 years 2% probability : 2475 yrs (SSE)) 5% damp, 50 years 10% probability : 475 yrs (OBE) (보통 OBE x 2 = SSE) (Return Period 계산. P50 = P1^50, 2% -> P1 = 0.98^(1/50), P1 = 0.999596. 1-P1 = 0.0401 % 1/0.000404 = 2475 yrs)
Damp : 감쇠비, 감쇠율 : 자연계에 존재하는 저항으로 인하여 구조물 내 에너지 손실과 응답이 감소하는 현상. 재료감쇠, 마찰감쇠. Ground Motion Response Spectra : 응답스펙트럼. 각 주기별 진동/지진에 대해 반응하는 최대변위를 얻기 위함. (변위, 속도, 가속도) 공진을 막는 것이 목적 (고유진동수와 주파수가 맞지 않도록) 구조물의 동적특성을 확인 (구조물의 시간에 따른 응답, 시간에 따른 가속도) f : 진동수 (frequency, Hz) 질량이 클수록 작아짐. 강성이 클수록(변위를 일으키기 힘듬) 커짐. 고유진동수가 크면 딱딱하다. (질량이 유지되면서 큰 강성을 갖는다, 낮다.) 높이가 높으면 고유진동수가 작다. 고유진동수를 크게 유지하면 반응이 작아진다. (가속도/변위가 작아진다.) T : 주기 (period)
얇을수록 높을수록 주기가 크다. (1이상 갖기 힘듬. 10층 20m 정도가 1) 작은 주기에서 더 큰 응답스펙트럼을 갖는다. = 진동수가 클수록 가속도가 크다. (당연) 진폭 : peak (한쪽), peak to peak (양쪽합), RMS (0.707), Average (0.5) 제진 : 진동수비(강제/고유) 0.7~1.4 에서 증폭. 감쇠(damper) 와 고유진동수 조정으로 제진. (1.4 이상으로 키움)
g-s graph : spectra acceleration (A,g) – period (T, s) : 질량을 곱하면 하중을 구할 수 있다. CAP : Compacted Aggregate Pier (Ground Improvement), 1meter D, 10meter L, 3meter Spacing - Drill hole – Material insert/Compact bottom bulb – Lift/Ram/Compact upto foundation/slab level PLAXIS FEM Analysis
SASW, MASW 표면파시험, Downhole Test 등을 통해 전단파속도 측정 : Vs, geophone 깊이별/층별 전단파 속도의 평균을 계산 (조화평균) 지반의 고유진동수 = 4 x Vs/H 상시미동측정을 통해 지반의 고유주파수(진동수) 측정 Gmax=density x Vs ^2 (G : Pa N/m2, density : kg/m3, Vs : m/s) 측정 MPa 로 가기 위해서는 /10^6 필요. G/Gmax vs Strain curve 가 있어야 함. Displacement 를 측정하고 Strain curve 에서 G를 찾음. Eo = 2·Go(1+υ) 도 추산 가능.
International Building Code / ASCE (American Society of Civil Engineers)
Earthquake Loads
- Ss : short-period spectral response acceleration. 0.2 s. D/B 에 따라 지역별 조사된 값. 없으면 Seismic Hazard Assessment 가 필요. 큰 곳은 1.5~3g, 보통 0.3~0.6g. MCE 기준/Ground Motion Response Accelerations 지반 운동 응답 가속도, Damping ratio 고려 (보통 5%, damping ratio에 따른 spectrum curve 가 달라지는 것 기억) - S1 : 1 second spectral response acceleration. 1 s. 응답반응가속도 큰 곳은 1g 이상, 보통 0.05~0.2g - PGA 와 Response Acceleration 의 관계 : Risk Analysis 에 따라 보정, Damping Ratio 에 따라 보정. PGA = Ss/2.5 PGA 는 실제 Geometry상 평균운동을 기준. Ss, S1 은 Maximum Direction Shaking 을 고려. - Spectrum, Response 의 의미 지반을 SDOF(Single Degree of Freedom)으로 모델하고 가속을 가했을때 반응. 진동 중 Maximum Response 를 택함. 주기를 다르게 하면서 각 Maximum Response 를 이음. -> 이것을 Response Spectrum 이라고 함. (a/t 그래프 : Ground Motion History, Time History, 주기에 따라 진동 가속도/속도/변위 구간 확인. 동적모델 해석 시 필요.) 5% damping 을 하면 3.2 정도 줄어듬. - 지반상황을 고려. (Risk 반영) (0.8~2.5 factor 고려) Site Class 에 따라 달라지고, Ss 가 작으면 Conservative design 을 위해 고려함. Site Class 가 좋으면 (지반이 좋으면) A를 Underestimate 하고, 지반이 좋지 않으면 A 가 작더라도 Increasing Factor 를 고려하여 Risk 를 줄임. - Design Spectral Response Acceleration 은 주기에 따라 달라짐. * 초기 : Sa = SDS (0.4+0.6 T/To) * Ground Motion Procedure 가 사용되지 않는 경우 * Ground Motion Hazard Analysis (SHA) 는 OBE/SSE 를 고려한 확률론적 접근으로 A 를 얻어냄.
- Site Class A (Hard Rock) ~ F (활성점성토), - Site Class E : PI>20, w>40%, Su < 0.24 kg/cm2 (24kPa), Site Class B : 탄성파속도 : 762 m/s 이상. - 층별 평균 전단파속도를 계산 : 조화 평균으로 계산. 속도나 투수계수등의 평균은 조화 평균(Harmonic)으로 구해야 맞다. (비율의 평균) * 조화 평균 : 속도의 평균에서 거리 기준이면 조화평균, 시간이 같다면 산술 평균.
- Damping Ratio Bs (Soil) : 0.01 ~ 0.2 (Soil 이 안좋을수록, A 가 커질수록 커짐.) - B (구조물 점성 감쇠비) : 보통 5% (상세 분석이 되지 않는 이상.) - B0 (유효감쇠비) : 위를 고려하여 0.2 아래로 결정.
- 지진하중 계산 : A(설계 가속도, SDS or SD1/T)를 구조물의 중요도와 응답수정계수를 고려하여 반영. - 응답수정계수 : 구조물 자체의 구속력이 크면 연구결과에 따라 3~8 정도의 설계가속도를 나누어 반영.
- 구조물의 주기 조건 (s) : 높을수록 주기가 커짐. 10층 20m 기준 1초 정도로 예상.
(1) Flow Liquefaction (흐름, 유동 액상화) 흐름이 존재하기 때문에 진동 후 액상화 발생 시 피해가 크다. 느슨한 경사에 위치한 건물 등 낮은 잔류강도를 갖는 (액상화 전단강도) 사질토에 일어남. 정적/동적 하중이 일어나는 경우 발생. 토석류와 같이 작은 붕괴가 큰 흐름으로 이어져 몰아침. (크고 빠른 흐름으로 대처가 어려움) 실트질의 성토 등 성토지반에서 고려될 필요가 있음.
(2) Cyclic Mobility (반복유동) 조밀한 Sand 에서도 발생할 수 있음. 반복하중에 의해 발생할 수 있는. (액상화 평가기준을 넘지 않더라도)
불포화토와 포화토의 차이 - 간극수의 영향을 고려하지 않으나 실제로 고려가 필요하고 모세관 현상 등의 작용으로 포화토와는 다른 거동특성 - 부분포화(Partially saturated), 불포화(unsaturated) 라고 부름. - 모관흡수력의 존재 여부가 가장 큰 차이.
사면 - 하부 배수가 발생하는 경우 윗부분의 불포화 현상. 모관흡수력(흡인력 존재), 겉보기 마찰력
불포화토의 함수특성곡선 - 함수특성곡선 : w(%)-흡인력(kPa) 곡선
1) 포화함수비에서 흡인력이 증가해도 물이 간극에서 유출되지 않는다. 2) Air Entry Value (AEV, 공기함입치, 보통 20kPa?) 를 초과하면서 공기 유입에 따라 물이 유출되고 흡수력이 같이 증가하게 됨. 3) AEV, 잔류함수량을 구하는 것이 목적. 4) 잔류함수비는 열에 의해서만 제거 가능.
불포화토의 전단특성 식 하나로 설명이 가능하고,
모관흡수력 ua – uw 는 내부마찰각이 아닌 겉보기마찰각을 사용한다. 겉보기 마찰각은 함수비/잔류함수비의 관계에 따라 내부마찰각과의 관계를 가질 수 있으며, 내부마찰각의 tan 값의 반정도가 된다고 볼 수 있음.
불포화토의 전단강도는 실험을 통해 얻기가 어렵다. (시간/장비/불포화상태의 구현)
이를 통해 강우 전/후의 사면의 안정을 수치해석으로 계산할 수 있으며, 그에 따른 대책 및 피해 정도를 예측할 수 있다.
Bishop 응력 - 수직응력과 모관흡수력의 선형적 조합. - Bishop 의 유효응력 p = (p-ua) + K (ua-uw) 변수K 를 포화도로 볼 수 있고, 1인 경우 일반 전단특성과 동일. - 축차응력 q 와 Bishop 응력의 비례관계.
Barron : 모래말뚝 배수 영향면적을 유효원으로 환산 - de = 1.05 d (삼각형 배치), 1.13 d (정사각형 배치) : d 타설간격 - 수평압밀계수 와 영향반경을 고려하여 시간계수를 산정. 그에 따라 압밀도 계산. - 스미어(Smear) Zone 의 영향 고려. - Sand Drain : 수평방향 배수가 공기에 절대적인 영향을 준다. 수직방향 배수 무시.
- 등가변형률을 고려한 평균압밀도
넓은 범위의 하중 적재는 1차원으로 해석할 수 있음. 좁은 구조물이나 도로는 3차원 압밀을 고려할 필요가 있음.
Rowe cell test (압밀)
회전축 중심의 3차원 압밀을 구현하기 위해 Rowe Cell Test 로 검증.
중심배수, 주변배수의 압밀계수로 구분
(보통 수직방향은 무시)
Well 을 통한 배수로 압밀이 진행되는 경우 수평방향의 평균압밀도를 구하는 방법 (Barron)
시간계수는 중심이 큰값을 갖는다. (압밀계수가 같다는 가정하에, 시간이 더 많이 걸린다는 말. 닿는 면적이 작으므로)
준설토 자중 압밀이론 - 고함수비 초연약점토 : 자중에 의한 압밀 - Terzaghi 적용 어려움 : 투수계수/압밀계수를 일정하게 접근 -> 자중시 변형이 발생. - 유한변형율 압밀이론 : 압축성과 투수성의 변화 고려. - 일정한 간극비로의 수렴 (수렴하고도 크리프 형태로 간극비 감소 지속)